ROUMANIE

Lycée Louis-le-Grand, test pour l'entrée en classe préparatoire MPSI, session 2011

Durée du test : 4 heures

Les exercices ci-dessous peuvent être abordés dans un ordre quelconque. L'usage des calculatrices n'est pas autorisé.

Exercice 1 Montrer que 2011 n'est pas la somme de deux carrés d'entiers relatifs (on pourra examiner les congruences modulo 4).

Exercice 2 Calculer l'intégrale

$$\int_0^1 \sqrt{1-x^2} dx.$$

Exercice 3 Montrer que $\frac{\ln 3}{\ln 2}$ est un nombre irrationnel.

Exercice 4 Soit $(a,b) \in \mathbb{C}^2$. Montrer que $|a|+|b| \leq |a-b|+|a+b|$ et étudier le cas d'égalité.

Exercice 5 Trouver tous les couples (u, v) de complexes solutions du système

$$\begin{cases} u^2 + v^2 &= -1 \\ uv &= 1 \end{cases}.$$

Exercice 6 Soit $n \ge 2$ un entier. Pour $x \in [-1, 0]$, on pose

$$f(x) = e^{nx} - (1+x)^n$$
.

Montrer qu'il existe un réel α de] -1,0[tel que f soit croissante sur $[-1,\alpha]$ et décroissante sur $[\alpha,0]$.

Exercice 7 Donner les deux derniers chiffres de l'écriture de 2^{2018} en base 10.

Exercice 8 Soit ABC un triangle non aplati d'un plan euclidien, et G son centre de gravité. On suppose que le triangle GBC est isocèle de sommet G, et que $\widehat{BGC} = \frac{2\pi}{3}$. Montrer que le triangle ABC est équilatéral.

Exercice 9 Soit $t \in [0, 1]$. Montrer l'inégalité

$$\forall u \geqslant 0 \quad \sqrt{1+u^2} - tu \geqslant \sqrt{1-t^2}.$$

Exercice 10 Trouver toutes les fonctions f de [0,1] dans \mathbb{R} telles que, pour tout $x \in [0,1]$, $2x - f(x) \in [0,1]$ et f(2x - f(x)) = x.

Exercice 11 a. Soit A une partie finie non vide de \mathbb{N} . Montrer que l'unique application strictement croissante de A dans lui-même est l'identité.

b. Soit $f: \mathbb{N} \to \mathbb{N}$ une fonction strictement croissante telle que, pour tous m et n dans \mathbb{N} , on ait f(mn) = f(m)f(n). Montrer que si f admet un point fixe k > 1, alors f est l'identité.

Exercice 12

Soit u la suite définie par $u_0=5$ et $u_{n+1}=u_n+\frac{1}{u_n}.$ Montrer que

$$45 < u_{1000} < 45, 1.$$