ROUMANIE

Lycée Louis-le-Grand, test pour l'entrée en classe préparatoire MPSI, session 2012

Durée du test : 4 heures

Les exercices ci-dessous peuvent être abordés dans un ordre quelconque. L'usage des calculatrices n'est pas autorisé.

Exercice 1 Soit $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites réelles à valeurs dans [0,1]. On suppose que $u_nv_n\to 1$. Montrer que $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ convergent.

Exercice 2 Résoudre dans \mathbb{R} l'équation $\cos^{10} x = \sin x - 1$.

Exercice 3 a. Soit $(u_n)_{n\geqslant 0}$ une suite réelle. On suppose que $u_0=0,\,u_1=1$ et que

$$\forall n \in \mathbb{N} \quad u_{n+2} + u_{n+1} - 2u_n = 0.$$

Déterminer u_n .

b. Soit $(v_n)_{n\geqslant 0}$ une suite réelle strictement positive. On suppose que $v_0=1,$ $v_1=e$ et que

$$\forall n \in \mathbb{N} \quad v_{n+2} = \frac{v_n^2}{v_{n+1}}.$$

Déterminer v_n .

Exercice 4 Trouver tous les $x \in \mathbb{Z}$ tels que x + 2 divise $x^2 + 2$.

Exercice 5 Soit, pour $n \ge 0$, $u_n = \int_0^1 t^n e^t dt$. Montrer que la suite $(u_n)_{n \ge 0}$ converge et donner sa limite.

Exercice 6 Un homme est sujet à de graves crises allergiques. Les jours sont numérotés par $\mathbb N$. Si l'homme est en bonne santé au jour n, la probabilité qu'il soit malade au jour n+1 est $\frac{1}{5}$. S'il est malade au jour n, la probabilité qu'il soit en bonne santé au jour n+1 est $\frac{1}{20}$. On note R_n l'événement « l'homme est malade le jour n ». On note p_n la probabilité de R_n . Donner une expression de p_n en fonction de p_0 .

Exercice 7 Montrer que, pour tout x > 0, on a

$$\ln(1+x)\ln(1+\frac{1}{x}) \leqslant (\ln 2)^2.$$

Exercice 8 Pour x réel, on pose $f(x) = x^3 - 2x$.

- a. Montrer qu'il existe deux réels $x \neq y$ tels que f(x) = f(y).
- **b.** Montrer qu'il n'existe pas deux nombres rationnels $x \neq y$ tels que f(x) = f(y).

Exercice 9 Trouver les couples (x, y) de \mathbb{N}^{*2} , avec x > y, tels que

$$\begin{cases} \operatorname{pgcd}(x,y) &= x - y \\ \operatorname{ppcm}(x,y) &= 300 \end{cases}.$$

Exercice 10 Soit $k \in \mathbb{Z}$. Donner une condition nécessaire et suffisante sur k pour qu'il existe un réel θ tel que $e^{i\theta} + e^{ik\theta} = 1$.

Exercice 11 a. Soit z_0, z_1, z_2, z_3 des complexes distincts. On suppose que, quel que soit le polynôme P à coefficients complexes de degré inférieur ou égal à 2, on a

$$P(z_0) = \frac{1}{3}(P(z_1) + P(z_2) + P(z_3)).$$

Montrer que z_1 , z_2 et z_3 sont les sommets d'un triangle équilatéral. On identifie ici les points du plan à leurs affixes complexes.

b. Soit z_0, z_1, \ldots, z_n des complexes distincts. On suppose que, quel que soit le polynôme P à coefficients complexes de degré inférieur ou égal à n-1, on a

$$P(z_0) = \frac{1}{n}(P(z_1) + \dots + P(z_n)).$$

Montrer que z_1, \ldots, z_n sont les sommets (pas nécessairement dans l'ordre) d'un polygone régulier.